Logo des digitalen Schulbuchs o-mathe.de. Schriftzug mit Omega als O

Minimallogo des digitalen Schulbuchs inf-schule.de. Omega als Symbol

s n h m r u
i

Vertiefung

Zur Orientierung

Wir beschäftigen uns weiterhin mit folgender Fragestellung:

Leitfrage

In welchem Bereich liegt die Wahrscheinlichkeit für die Augenzahl $1$ beim Pyramidenwürfel, wenn die Häufigkeit dieses Ergebnisses bei einer Versuchsreihe bekannt ist?

Vertrauensintervalle bestimmen

Betrachte weiterhin folgende Ausgangssituation:

  • Bei einem Pyramidenwürfel ist unklar, mit welcher Wahrscheinlichkeit $p$ die Augenzahl $1$ fällt.
  • Um diese Wahrscheinlichkeit $p$ abzuschätzen, wird der Pyramidenwürfel in einer Versuchsreihe 100-mal geworfen. Diese Versuchsreihe kann dann als Bernoulli-Kette angesehen werden.
  • Die Zufallsgröße $X$ beschreibt wie üblich die Anzahl der Treffer. Als Treffer wird die Augenzahl $1$ gewertet.
  • In der betrachteten Versuchsreihe werden $41$ Treffer erhalten. Die absolute Trefferhäufigkeit beträgt also $X = 41$, die relative Trefferhäufigkeit beträgt dann $\frac{X}{n} = 0.41$ (mit $n = 100$).

Mit dem folgenden Applet kannst du Bereiche für die gesuchte Wahrscheinlichkeit bestimmen.

Anleitung für das Applet
  • In den Eingabefeldern zur Versuchsreihe (rot dargestellt) kannst du die Parameter der betrachteten Versuchsreihe einstellen: die Länge $n$ der Versuchsreihe und die betrachtete Trefferhäufigkeit $X$.
  • Die Versuchsreihe wird als Bernoulli-Kette angesehen. Ganz oben musst du die Länge $n$ der Bernoulli-Kette einstellen. Die unbekannte Trefferwahrscheinlichkeit $p$ kannst du mit dem Schieberegler für $p$ variieren.
  • Zusätzlich kannst du eine bestimmte Sicherheitswahrscheinlichkeit vorgeben: $90\%$ oder $95\%$ oder $99\%$.
  • Das Applet zeigt dann die Wahrscheinlichkeitsverteilung von $X$ für die eingestellten Parameter der Bernoulli-Kette und verdeutlicht das Intervall zur eingestellten Sicherheitswahrscheinlichkeit. Die betrachtete Trefferhäufigkeit wird mit der roten Linie in der Grafik verdeutlicht.

Zum Herunterladen: vertrauensintervalle1.ggb

Aufgabe 1

(a) Stelle die Sicherheitswahrscheinlichkeit $95\%$ ein. Bestimme experimentell das $95\%$-Vertrauensintervall für $p$.

(b) Stelle die Sicherheitswahrscheinlichkeit $99\%$ ein. Bestimme experimentell das $99\%$-Vertrauensintervall für $p$.

Aufgabe 2

(a) Begründe, warum bei einer größeren Sicherheitswahrscheinlichkeit auch ein (in der Regel) größeres Vertrauensintervall für $p$ erhalten wird.

(b) Warum wird $p$ nicht vertraut, wenn $p$ nicht in einem Vertrauensintervall zu einer vorgegebenen Sicherheitswahrscheinlichkeit liegt? Begründe kurz.

Suche

v
6.7.2.1.1.3
o-mathe.de/stochastik/schaetzen/wahrscheinlichkeiten/erkundung/lernstrecke/vertiefung
o-mathe.de/6.7.2.1.1.3

Rückmeldung geben