i

Überprüfung - Bernoulli-Ketten

Aufgabe 1

In einer Urne befinden sich 10 rote und 15 blaue Kugeln. Aus der Urne werden 6 Kugeln (mit bzw. ohne Zurücklegen) gezogen. Beobachtet wird die Abfolge der Kugelfarben.

Urne

(a) Begründe: Beim 6-maligen Ziehen mit Zurücklegen handelt es sich um eine Bernoulli-Kette, beim 6-maligen Ziehen ohne Zurücklegen jedoch nicht.

(b) Eine Bernoulli-Kette wird mit ihrer Länge und der Trefferwahrscheinlichkeit beschrieben. Gib diese Kenngrößen für das 6-maligen Ziehen mit Zurücklegen an.

(c) Wie groß ist die Wahrscheinlichkeit, beim 6-maligen Ziehen mit Zurücklegen genau 3 rote Kugeln zu ziehen? Bestimme diese Wahrscheinlichkeit mit der Formel von Bernoulli.

(d) Wie groß ist die Wahrscheinlichkeit, beim 6-maligen Ziehen mit Zurücklegen nur rote Kugeln zu ziehen? Zeige, dass diese Wahrscheinlichkeit auch ohne die Formel von Bernoulli berechnet werden kann.

(e) Wie groß ist die Wahrscheinlichkeit, beim 6-maligen Ziehen mit Zurücklegen genau eine rote Kugel zu ziehen? Kann diese Wahrscheinlichkeit so berechnet werden? Begründe.

P(X=1)=0.40.65

Kontrolle

(a) Bei einer Bernoulli-Kette muss jedes Teilexperiment ein Bernoulli-Experiment mit derselben Trefferwahrscheinlichkeit sein. Diese Bedingung ist beim 6-maligen Ziehen mit Zurücklegen erfüllt (Treffer: rote Kugel). Beim 6-maligen Ziehen ohne Zurücklegen ändert sich dagegen die Wahrscheinlichkeit der Ergebnisse nach jedem Teilexperiment.

(b) 6-mal Ziehen mit Zurücklegen: Wenn „rote Kugel“ als Treffer betrachtet wird, dann handelt es sich um eine Bernoulli-Kette der Länge n=6 mit Trefferwahrscheinlichkeit p=0.4.

(c) Die Zufallsgröße X beschreibe die Anzahl der Treffer. Dann gilt: P(X=3)=(63)0.430.630.28.

(d) Die Zufallsgröße X beschreibe die Anzahl der Treffer. Dann gilt: P(X=6)=0.460.004.

(e) Nein. Hier wird nicht berücksichtigt, dass die rote Kugel als erste oder zweite oder ... gezogen werden kann.

Suche

6.6.1.4
o-mathe.de/stochastik/binomialverteilung/bernoulli/ueberpruefung
o-mathe.de/6.6.1.4

Rückmeldung geben